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A maximum entropy theorem is developed and tested for granular contact forces. Although it is idealized,
describing two-dimensional packings of round, rigid, frictionless, cohesionless disks with coordination number
Z=4, it appears to describe a central part of the physics present in the more general cases. The theorem does
not make the strong claims of Edwards’ hypothesis, nor does it rely upon Edwards’ hypothesis at any point.
Instead, it begins solely from the physical assumption that closed loops of grains are unable to impose strong
force correlations around the loop. This statement is shown to be a generalization of Boltzmann’s assumption
of molecular chaos �his stosszahlansatz�, allowing for the extra symmetries of granular stress propagation
compared to the more limited symmetries of momentum propagation in a thermodynamic system. The theorem
that follows from this is similar to Boltzmann’s H theorem and is presented as an alternative to Edwards’
hypothesis for explaining some granular phenomena. It identifies a very interesting feature of granular pack-
ings: if the generalized stosszahlansatz is correct, then the bulk of homogeneous granular packings must satisfy
a maximum entropy condition simply by virtue of being stable, without any exploration of phase space
required. This leads to an independent derivation of the contact force statistics, and these predictions have been
compared to numerical simulation data in the isotropic case. The good agreement implies that the generalized
stosszahlansatz is indeed accurate at least for the isotropic state of the idealized case studied here, and that it
is the reductionist explanation for contact force statistics in this case.
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I. INTRODUCTION

Edwards hypothesized that every mechanically stable mi-
crostate of a powder is equally probable in a Gibbs-like en-
semble, for cases where the powder is prepared in certain,
repeatable ways �1�. This hypothesis has been extended by
others to the statistics of granular contact forces for both
isostatic and hyperstatic cases. Packings of round, rigid, fric-
tionless disks or spheres are known to be isostatic �2�, mean-
ing that there are exactly the same number of contact force
unknowns in a granular packing as there are stability equa-
tions for the grains, so that the value of each contact force
can be resolved by linear algebra operating solely upon the
geometry of the intergranular contact network �assuming that
the overall stress of the packing has also been specified�. For
isostatic cases, then, each valid microstate in an Edwards’
ensemble corresponds to exactly one microstate of contact
forces. An ensemble of packings with a flat measure thus
implies an ensemble of contact force networks with the same
flat measure. Hyperstatic packings, on the other hand, have
more contact force unknowns in the granular packing than
there are stability equations for the individual grains. Thus,
the values of the forces throughout the packing are mechani-
cally indeterminate. A Gibbs-like ensemble method has been
applied to the contact forces in such packings by selecting a
single packing geometry that is held constant throughout the
ensemble, assuming a flat measure over all of the valid con-
tact force microstates �3,4�. All of these ensembles, isostatic
as well as hyperstatic, are similar to Gibbs’ ensembles in
thermal systems because the flat measure is assumed a pri-

ori. The isostatic case was recently analyzed by extending
Gibbs’ most probable distribution method �5,6�, the same
method used in textbooks to derive the Maxwell-Boltzmann,
Bose and Fermi distributions. In those derivations, the most
probable distribution is concerned with momenta f�p� or par-
ticle energies f�E�, but when extended to granular contact
forces it predicts the most probable distribution of single
grain states, ��g�, where g is a set of variables that describe
everything that can be known about an individual grain in-
cluding all of its contact angles, forces and their correlations.
Subsequent discrete element modeling has validated the pre-
dictions of this theory for the special, isostatic case described
above �6,7�. Thus, Edwards hypothesis is sufficient to derive
granular contact force statistics for single grain states in this
case.

However, this paper will show that Edwards’ hypothesis
is not really necessary and that it is not really a part of the
reductionist explanation for granular contact force statistics.
It makes a very strong claim about microstructural geom-
etries being equally probable, and this is a much stronger
claim than we need to derive granular contact force statistics.
Instead, the reductionist explanation is found in the nature of
correlations in granular contact forces, which can be summa-
rized in a statement that is a generalization of Boltzmann’s
assumption of molecular chaos. Boltzmann showed that the
absence of precorrelation between colliding gas molecules
inexorably relaxes the gas to maximum entropy; this paper
will show that the corresponding condition in granular con-
tact forces inexorably requires the packing to exist �in its
bulk� in a relaxed state of maximum contact force entropy.
This paper will follow Boltzmann’s approach, developing a
“translation” equation analogous to Boltzmann’s transport
equation �but adapted for static packings in which nothing is*philip.t.metzger@nasa.gov
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moving�, with a maximum entropy proof similar to the H
theorem, to produce a derivation of ��g� without making any
a priori assumptions of a flat measure. This theory is pre-
sented as an alternative to Edwards’ hypothesis to provide a
more physical basis for the statistical mechanics of some
granular phenomena.

II. GRANULAR CONTACT FORCE STOSSZAHLANSATZ

A. “Translation” in a static granular packing

Boltzmann wrote a transport equation to track the evolu-
tion through time in the single-particle distribution function
f�p�, where p is momentum. For static granular packings we
must describe how the statistics evolve through space, not
time. We will therefore perform “translation” through suc-
cessive cross-sectional “layers” of grains, as defined here.
Referring to Fig. 1, we �1� draw a cross-sectional line �same
as any one of the straight lines in the figure�, �2� select the set
of grains intersected by that one line �shaded grains�, and �3�
include only those contacts on that set of grains �heavy dots�
that �a� connect to other grains external to the shaded set and
�b� are located on one side of the shaded set. Next, we con-
sider the force vectors on that set of contacts, including both
the normal and tangential components of force if the grains
are frictional. We decompose these vectors into Cartesian
components parallel and normal to the dashed line. Summing
all the components in the normal direction produces the “to-
tal Cartesian load” in that plane. “Translating” refers to the
continuous motion of the cross-sectional line that picks out
the set of grains in a layer. As the line translates across the
packing, some grains are no longer intersected by the line
and hence leave the layer, while some other grains become
intersected by the line and hence join the layer. In the ab-
sence of gravity, the total Cartesian load is conserved with
respect to translating the straight line, as illustrated in the
figure by the parallel layer of shaded grains and heavy dots.
If that were not so, then the grains between the two shaded
layers would be accelerating.

Because the container walls might also contribute forces
parallel to the direction of translation, thus spoiling the con-
servation of the total force, we must consider special cases
where this cannot occur. There are at least two such cases,
corresponding to microcanonical and canonical statistics. If
the container is two dimensional �2D� �for specificity�, and if
the side walls are flat, parallel, and frictionless, then we will
have two spatial axes along which to translate layers of

grains subject to the conservation laws as shown on the left-
and right-hand sides of Fig. 1. We cannot perform the trans-
lation in a diagonal direction in this finite container because
then the length of layers will not be constant and neither will
the total perpendicular force contained within them. This
translation in a finite container corresponds to microcanoni-
cal statistics because the system is closed and the force con-
servation is exact. Alternatively, we can perform the transla-
tion in an extremely large packing �perhaps infinite� and
consider only the set of grains selected by a relatively short
line segment translating through the middle of the packing
far from any boundaries. In that case, the conservation law
will not be exact because some force will be entering and
exiting the segment at both of its ends throughout the trans-
lation. However, the longer the segment of grains is, then the
less significant those fluctuations become and the more
closely it approximates an exact conservation law. This cor-
responds to canonical statistics because the force contained
in the finite line segment is in contact with an infinite reser-
voir of force at each of its ends. In this canonical case the
line segment may have any arbitrary orientation, not only the
x or y directions, and it translates across the packing in a
direction normal to its orientation. In this paper it does not
matter whether we consider the microcanonical or canonical
case, nor in what direction we imagine the translation to
occur. The generality of the equations describing this trans-
lation contributes to the generality of the conclusions.

It should be noted that this translation ansatz allows us to
treat a static granular packing with methods borrowed from
kinetic theory, even though the packing is completely static.
The role of the time dimension from kinetic theory is re-
placed by the translation through a spatial dimension. The
collisions of particles from kinetic theory are replaced by the
meeting together of contact forces on the grains. The force
vectors on one hemisphere of a grain are analogous to gas
particles going into a collision, and the forces on the opposite
hemisphere are analogous to the same particles exiting from
the collision later in time. �The number of contact forces
“entering” and “exiting” the opposite hemispheres of a grain
in this fashion need not be conserved.� Thus, the granular
theory developed here is analagous to molecular kinetic
theory, but it must be remembered that everything is com-
pletely static and that all contacts between grains are un-
changing in time, not transitory as are the collisions in ki-
netic theory. This theory is not to be confused with the
kinetic theory of granular gases, which deals with grains
moving and colliding in time.

Although this force conservation applies to more general
cases, the remainder of this paper deals only with round,
rigid, frictionless, 2D grains. Table I defines the compact
notation that will be used to describe the states of �1� single
grains, �2� sets of grains, and �3� entire packings in this spe-
cial case. The single-grain state variable is

g = �wx,wy,�1, . . . ,�4� , �1�

where the Cartesian loads wx and wy are the total forces
borne by a grain in each orthogonal direction and �i are the
contact angles. From these variables, the individual contact
forces may be recovered by linear algebra and trigonometry.

FIG. 1. Illustration of how sheets of force are conserved while
translating through a 2D granular packing �as described in the text�,
so that a Boltzmann-like transport equation may be defined.
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This form of g assumes contact number Z=4 for every grain.
It may be generalized for grains with Z�4 but doing so adds
no insight to the physics at this stage. Note also that certain
regions in g describe grain configurations that have one or
more negative �tensile� forces. It will therefore be necessary
to restrict the range of g to the nontensile �stable� region S
when dealing with cohesionless grains, as we do in this
paper.

The densities of states in Table I refer to either single-
particle or multiple-particle states in the corresponding phase
space. For example, the density of single-particle states ��g�
refers to the grains in a single packing or in a single layer of
a packing �depending on the context�, and it tells how many
of those grains exist per unit volume of g space as a function
of the location in g space. Likewise, the density of packing
states ���� refers to a statistical ensemble of granular pack-
ings and tells us how many of those packings exist per unit
volume of � space as a function of the location in � space.
The construction list C contained in � specifies the exact
ordering in which the grains are connected together such that
they form a packing. The density of states ���� is also a
multiple-particle density of states describing collections of
grains with specified single-particle states, but unlike ���� it
does not have a construction list and so it does not specify
the location of the grains in physical space nor whether they
physically connect to one another in a packing. Despite the
mathematical abstraction, it will be useful in this paper.

B. Need to generalize Boltzmann’s stosszahlansatz

Boltzmann’s stosszahlansatz, or his assumption of mo-
lecular chaos, is that colliding particles have uncorrelated
momenta prior to the collision,

F�p1,p2� = f�p1� · f�p2� , �2�

or more compactly,

F21 = f1f2, �3�

where F21 is the joint probability distribution for the two
particles and f i are the single-particle distribution functions.
Are the contact forces that meet together on a grain in a
granular packing similarly uncorrelated? Figure 2 shows how
the relationship of contact forces upon a static grain does
bear an analogy to momenta in a gas. In a particle collision
the sum of the momentum vectors is conserved. Hence, if the
outgoing momentum vectors are reversed, then the sum of all
four momentum vectors will equal precisely zero. Setting a
little space between the four arrow heads and drawing a

circle, we see that this set of four vectors is identical to four
contact forces on a static grain.

However, Eq. �2� assumes noncorrelation for the incom-
ing momentum vectors only �8�, whereas the idealized
granular packings considered here �without gravity� should
be more symmetric than this. If we try to apply Boltzmann’s
stosszahlansatz to granular contact forces, we could group
the four forces on the grain into six different pairs, and there
is no reason why one of those pairs should be written as
uncorrelated with the exclusion of the other five. Further-
more, Silbert, Grest, and Landry have demonstrated through
numerical modeling that contact forces meeting together on a
grain do have a very strong pattern of correlation and anti-
correlation �9�. There is anticorrelation for contacts closer
together than roughly � /2 radians of angular separation, and
positive correlation when the angular separation is greater
than roughly � /2.

Owing to these things, it would be incorrect to use the
form of Eq. �2� for the granular stosszahlansatz. Instead, we
must begin with a statement that is even more fundamental
than Eq. �2�, namely, that correlation cannot arise through the
closure of loops of forces �or loops of momenta� within the
network of these vectors. This is the generalized stosszahl-
ansatz. It will be shown below that this generalized state-
ment does indeed reduce to Eq. �2� when causality is as-
sumed to proceed only in the forward time direction.
However, it produces a very different form when “causality”
�information flow� is assumed to be symmetric in all dimen-
sions of the vector network. That symmetric form is the one
that we need for granular packings.

A priori arguments have been provided in �5� to justify
the generalized stosszahlansatz, that correlation does not
arise through the closure of force loops in the force vector
network. Appendix A of this paper extends those arguments.
As with thermal systems, the ultimate proof of the stosszahl-
ansatz will be its ability to make correct predictions. If the
predictions are correct, then we may claim a posteriori that it

TABLE I. Compact notation for 2D packings with Z=4.

Scale Number of State Density

grains variable of states

Grain 1 g= �wx ,wy ,�1 , . . . ,�4� ��g�
Set of

grains m �= �g1 ,g2 , . . . ,gm� ����
Packing N �= ��g1 ,g2 , . . . ,gN�C� ����

In-going

momenta

Out-going

momenta

a b c

4321
pppp
    

+=+ ( ) ( ) 0
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=+++ −− pppp
    

0
4321

=+++ ffff
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2
p
 

4
p
 

3
p
 

collision

Integrate across

time and point all

momentum vectors

inward Identical to forces on

static grains

FIG. 2. Illustration of how momentum vectors in binary colli-
sions of a dilute gas are analogous to contact forces on a static
grain. Boltzmann wrote the stosszahlansatz with preference for the
in-going momentum vectors, but for static granular materials the
symmetries among the contact force vectors must be restored.
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is indeed the reductionist explanation for the statistics of
granular contact forces.

C. Mathematical form of the granular stosszahlansatz

For a dilute gas it is possible to represent the network of
particle collisions occurring through time as a four-
dimensional network graph, with the collisions as the verti-
ces and the particle trajectories as the edges �line segments�
connecting the vertices, and with one of the four graphical
dimensions representing time. A lower-dimensional version
of this is illustrated in Fig. 3. It will not be shown here, but
the density of states for a block of time in this network can
be written using variables that are identical to those used for
granular packing densities of states, with the distribution of
momenta f�p� replacing the distribution of contact forces
P�f� and the time dimension replacing any one spatial di-
mension, and with some differences in the term that defines
the allowable sets of momentum vectors �or force vectors�
that appear at the collisions �or at the grains�. It is possible to
analyze the ensemble of these networks in each case and
compare the results. Here we will show how two different
forms of the stosszahlansatz are obtained depending only
upon the directionality of the information flow through the
network. We will obtain Boltzmann’s stosszahlansatz when
we assume all information travels in one direction across the
network �representing time asymmetry�, and we will obtain
the granular version of the stosszahlansatz when we assume
information has propagated across the network symmetri-
cally in all directions. This will demonstrate that the gener-
alized stosszahlansatz really does encompass both versions
and reduces to one or the other depending on the assumed
direction of information flow. The density of states we write
in this section will then no longer be needed in the remainder
of the paper. It will only be used in this section to derive the
two mathematical forms of the stosszahlansatz.

The multiparticle density of states describing the en-
semble of these granular packings �and adaptable to the col-
lision networks of dilute gases� is the following:

������Pj�� = ��Newton’s third law���no tensile forces�

	��geometric closure of loops�

	��sequence�Pj����collision auxiliary� . �4�

For static granular packings of rigid, round, frictionless
grains �without the symmetry-breaking effect of gravity�, this
becomes

������Pj�f��,P4��

= � 	
�
�,����C

��f
� + f���
�	

=1

N

	
�=1

4

��f
��
�����C�

		
j

�„Pj�f� − P j��f���…�„P4� − Q4����… . �5�

Most of the terms in this equation are just notional and do
not have to be defined in enough detail for doing calculations
because they will factor out of the equations below and will
not affect the results in this paper. Before describing these
terms, we note that Eq. �5� does not have a term to enforce
Newton’s second law on each grain. Instead, we have defined
g and � such that Newton’s second law is automatically sat-
isfied for every grain throughout the range of the phase
space. To do this, g was defined with wx and wy rather than
four contact forces. This removes two degrees of freedom
per grain from the phase space coordinates and thus prevents
those combinations of contact forces on a grain that would
not have summed to zero. The individual contact forces may
be calculated for any grain by linear algebra and trigonom-
etry from the wx and wy with the four contact angles con-
tained in g �10�. Thus, the contact forces appear in several
terms of Eq. �5� as functions f
�= f
��g
� although the argu-
ment was suppressed for compactness.

The first term in Eq. �5� ensures that the density of states
is nonzero only in the regions of � where Newton’s third law
is satisfied for every contacting pair of grains. The contact
force on grain 
 on its contact � is f
�. The construction list
C tells which grain and contact combination �
�� connects to
���� and thereby constructs a specific packing from the set
of grains specified in �. This is the most important term
affecting the results of this paper.

For the second term, the Heaviside step function ensures
that the density of states is nonzero only where the forces are
positive, with positive defined as pointing inwardly on the
grains. This is because we are dealing with cohesionless
granular materials �no tensile forces possible�. For the third
term, the notional function �����C� was introduced by Ed-
wards �1�. It was defined to evaluate either to zero or unity,
being unity only when the locus in � describes a configura-
tion of grains that form precisely closed loops, with contact-
ing grains just touching each other precisely without any
overlapping. This, along with the constraints on the contact
forces, is sufficient to ensure a physically stable granular
packing. � has not been defined more specifically because it
is not needed in this paper.

Discussion of the fourth term will be delayed until last
due to its importance. The fifth term is the one that was
called the “collision auxiliary” in Eq. �4�. This term will take
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D
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m
e

FIG. 3. Illustration of how a network of gas collisions and a
network of packed grains may both be represented by network
graphs of similar topology. Identical sets of variables may be used
to define a density of states of the vector networks for either system.
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different forms depending on whether we are discussing the
case of granular packings �contact force networks� or the
case of dilute gases �momentum networks�. The similarities
and differences between the two cases are unimportant to the
theory developed in this paper, but they are explained in
Appendix B if the reader is interested in the analogy between
the two cases. It was called the “collision auxiliary” because
in the case of dilute gases it would provide more constraints
on the set of physically realizable collisions. In Eq. �5� the
term is written in a form relevant only to granular packings.
The � function ensures that the density of states is nonzero
only for packings that have the fabric distribution P4� speci-
fied within its argument. This fabric is the joint contact angle
distribution P4���1 ,�2 ,�3 ,�4� providing the probability that
all four contacts on an individual grain will take on specified
values simultaneously, as discussed in �11�. This joint distri-
bution is important because of the intragrain correlations be-
tween contact forces. The function Q4� computes this statis-
tical distribution from the set of grains �g
� specified by the
locus �. In the thermodynamic limit with an infinite number
of grains, the � function selects only those packings that have
precisely the specified P4�. For a practical packing with only
a finite number of grains, this term should be defined to
allow some statistical fluctuation in P4�. However, as stated
above, we do not need to define this term so precisely since
it is just a notional placeholder and does not affect the rest of
the paper.

The fourth term may be the most confusing, and it factors
out of the equations and does not affect the results of this
paper, and yet it is the most important term for understanding
the purpose of the ensemble. Why do we begin a paper on a
Boltzmann-type transport equation with an ensemble, which
is reminiscent of Gibbsian methods? We do so because we
will apply the generalized stosszahlansatz to this ensemble
and then analyze its statistics to obtain a mathematical form
for that stosszahlansatz. That mathematical form can then be
used in the Boltzmann-type transport equation and we can
abandon the ensemble methods at that time. But for now, this
fourth term defines a set of packings in which the density of
single-particle states can evolve with respect to translation in
one of the spatial dimensions, just as Boltzmann was con-
cerned with dilute gases in which the distribution of mo-
menta would evolve with respect to translation through the
time dimension. Therefore, we subdivide the packing into
regions that are subscripted by j so that we can translate
through these regions by incrementing j. These regions are
defined between successive cross-sectional planes cutting
across the packing as shown in Fig. 1 �12�. The � function
ensures that the density of states is nonzero only for packings
that have the specified distribution of contact forces Pj�f�
within each region. At this stage of the paper we do not care
what the forms of these specified distributions Pj actually are
or how they may evolve. All we care about is that every
packing in the ensemble has the same sequence of distribu-
tions �P1�f� , P2�f� , P3�f� , . . .� as all the other packings in the
ensemble. Later this paper will show how the sequence of Pj
actually does behave �13�. The functions P j��f��� compute
the distribution of contact forces from the grains �g
� in each
region j specified by the locus �. As with the similar func-

tion Q4� discussed above, for practical packings with only a
finite number of grains the term should be defined to allow
some statistical fluctuation in the contact force distributions.
However, this term is notional and will factor out from the
equations below.

Finally, we note that there is no term to specify the stress
state of the packing. That is because it is specified implicitly
in the �Pj�. We can compute the stress in any region as a
function of the contact force vectors in that region. Newton’s
third law enforced across the packing will ensure that any
stresses appearing in adjacent regions are physically pos-
sible.

Because the identities of the grains are unimportant, the
statistics of the ensemble are unaffected by summing the
density of states � over any set of permutations of grain
exchanges. At any particular location in � space, the � func-
tion that enforces Newton’s third law will select from those
permutations only those that produce a self-consistent pack-
ing. Here for convenience we sum over those permutations
that keep the grains within their own regions j, denoted by
the subset �i�* of the set �i� of all possible construction lists
Ci,

�̃��� = �
i��i�*

���� . �6�

All terms in Eq. �5� factor out from this sum except those
containing Ci explicitly. We shall examine this unfactored
part in the thermodynamic limit

� = lim
�Nj�→���

�
i��i�*

�����Ci�	
Ci

�2�f
� + f��� . �7�

Now we apply the generalized stosszahlansatz by removing
the closure of force loops in the packings. We do so simply
by eliminating the � term from Eq. �5�, as explained by Fig.
4. This converts the ensemble of closed-loop contact force
networks into an ensemble of tree networks as shown in Fig.
4. If the generalized stosszahlansatz is correct, then eliminat-
ing � will have no effect on the statistics of the contact
forces or the single grain states in the ensemble.

We may note that it was a strategic choice to specify the
joint distribution of contact angles P4� as the fabric in the
fifth term, because it implicitly enforces steric exclusion by
evaluating to zero everywhere that adjacent grain contact
angles are too close together. Therefore, while � served the
purpose of enforcing the nonoverlapping of grains in the
packing, P4� continues to serve this purpose within the first
coordination shell of every grain, as illustrated in Fig. 5.
Therefore, even though we have eliminated �, we still have
steric exclusion in the first coordination shell and so the set
of individual grains in the ensemble will still be valid. Over-
lapping of grains will appear only in the second and higher
coordination shells �14�.

Here it is most important to note that Eq. �5� is not an
Edwards ensemble, which would have included all possible
sequences �Pj�. We do not specify the relative probability of
systems having one particular sequence versus any other; we
only specify one particular sequence to be retained in this
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subset of the Edwards ensemble. The flat measure within this
subset of the Edwards ensemble is inherent to Boltzmann’s
kinetic theory when we assume his stosszahlansatz. That is,
in the thermodynamic limit when we drop the closure of
loops every tree network becomes identical apart from a
trivial relabel of the branches. The stronger claims made by
Gibbs’ and Edwards’ flat measures have been avoided in fa-
vor of this much weaker claim inherent to Boltzmann’s
theory.

The analysis of � is shown in Appendix C. Two different
results can be obtained depending on the assumed direction
that information has propagated through the network. If we
assume that information propagated only in the direction of
increasing j, then we obtain

Fj�f1,f2� = Pj�f1� · Pj�f2� , �8�

which is Boltzmann’s form. We may also derive the symmet-
ric case on the same network, with the information propagat-

ing symmetrically in both directions of j. This situation de-
scribes, for example, a linearly elastic system of grains after
the dynamic stress waves have dissipated and the solution to
the Laplace equation remains. As shown in Appendix C, we
obtain

Fj�g� = �Pj�f1� · Pj�f2� · Pj�f3� · Pj�f4��1/2, �9�

where fi= fi�g� and where the four forces can be located with
complete generality around the grain �including three con-
tacts on one side of the grain and only one contact on the
opposite side, etc.�. This is the mathematical form of the
granular stosszahlansatz. This form is now symmetric over
all four forces, and yet because of the square root it still has
dimensions of �f�−2. This is so simple that perhaps we should
have guessed the result before actually deriving it. Clearly
we did not need to derive the classical form given in Eq. �8�,
since it is well known from probability theory that the joint
distribution of two independent variables is the product of
their individual distributions. However, the symmetric form
given in Eq. �9� is unknown in probability theory �to the
author’s knowledge� because probability theory deals with
macroscopic events in time, in which causality occurs asym-
metrically in the forward time direction, only. Equation �9� is
the first result of this paper.

III. GRANULAR H THEOREM

A. Granular translation equation

We shall analyze what happens to the density of layer
states defined as in Fig. 1 as its cross-sectional line translates
in some direction x, which is perpendicular to the layer and
corresponds to increasing j for the successive Pj�f�. There-
fore, ��g�=� j�g�=��g ,xj� although the j and the x shall be
suppressed.

As we translate from xj→xj+1=xj +�x with �x�Dparticle
�the grain diameter�, a small fraction of the grains in the
layer will no longer be intersected by the line and hence will
exit the layer. Also, some new grains will be intersected by
the cross-sectional line and hence they will join the layer. If
the layer contains M grains, then the number of grains ex-
pected to leave the layer in �x is m=M�x /Dparticle. If the
fabric is constant across the packing �so that M is constant�,
then this is also the number of grains joining the layer in �x.
For sufficiently small �x the grains exiting the layer will be
sufficiently far apart to be statistically independent. This
avoids the need to explicitly account for correlations in the
layer. The probability for a particular set of m grains to leave
during �x is therefore

Pout��� = 	

=1

m

��g
� . �10�

The probability for a particular set of m grains to enter dur-
ing �x can be written in terms of the generalized stosszahl-
ansatz from Eq. �9�, except that we must be careful because
in general P�f� for contacts that are on one hemisphere of the
grains will not be the same as for the other hemisphere be-
cause ��g� is evolving with x and P= P���. Therefore, we

No closure of force loops

a b

FIG. 4. �Left-hand side� When � is kept as part of the density
of states, forces form loops, and so forces that intersect on the
central grain may have precorrelation because they have seen parts
of each other before. �Right-hand side� When � is omitted from
the density of states, then force loops do not close, and so the forces
that meet together on a grain cannot be precorrelated by the pack-
ing. The only correlation arises from the stability requirements of
the central grain, itself.

P4θ (θ1, θ2, θ3, θ4) enforces

steric exclusion in the first

coordination shell

 ζ enforces steric exclusion in

the second coordination shell

and higher

FIG. 5. Illustration of coordination shells. The central grain is
shaded dark. The first coordination shell is shaded lightly. The sec-
ond coordination shell is dashed and unshaded. Omitting � from
the density of states removes the closure of force loops but does not
affect the fabric of the individual grains.
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write the stosszahlansatz in the form,

���g� = 	
�+

�P�„f��g�…	
�−

�P„f��g�… , �11�

where �− refers to all the contacts on grain 
 in the reverse
direction of the translation, and �+ refers to its contacts in the
forward direction of the translation. Likewise, P is the dis-
tribution of contact forces in the reverse direction and P� is
the distribution in the forward direction. Because the grains
entering the layer are statistically independent for sufficiently
small �x, we may write the probability for a particular set of
m grains to enter during that interval as

Pin���� = N	

=1

m

���g
�� , �12�

where N is for normalization.
Because forces are conserved from one layer to the next,

the physics are analogous to Boltzmann’s binary collisions,
except that they are “m-nary” transitions of grains entering
and exiting each layer, and that each iteration �x contains
only one of these m-nary transitions. The probability of hav-
ing a particular transition �→�� is

n�� → ��� = N	

=1

m

��g
����g
�� . �13�

The probability that � will go to any set of single grain states
is

n�� → all� = 
S
Dg1� ¯ Dgm�N	


=1

m

��g
����g
�� , �14�

where the integrals are carried out only over the stable region
S in gi. Likewise,

n�all → �� = 
S
Dg1� ¯ Dgm�N	


=1

m

��g
�����g
� . �15�

To determine the rate of change in ��g� during the transla-
tion, we write

d

dx
��g1� = 

S
Dg2 ¯ Dgm�n�all → �� − n�� → all�� ,

�16�

which is the “translation equation.”

B. Counting states for granular packings

To evaluate how this translation equation behaves we
need a functional similar to Boltzmann’s H. As a mathemati-
cal proof, the H theorem does not demand that H have any
physical meaning. However, for the dilute gas H becomes
the negative of Shannon’s entropy when the system is in
equilibrium, and it is helpful after the mathematical proof is
complete to discuss the physical meaning of this. Following
Boltzmann, the granular H shall likewise be �the negative of�
a generalization of Shannon’s entropy. We define H so that it

will indicate how many packing states correspond to any
particular ��g�. The “most entropic” ��g� is the one that
arises in the greatest number of packings. As explained in
Ref. �5�, we may explicitly count the packing states as a
functional of ��g� except that here it shall be applied to a
single layer instead of an entire packing. First we discretize
��g�→�ijklmn, where the six arguments of g have been bro-
ken into small bins of size �w and �� and indexed as
wxi ,wyj ,�1k , . . . ,�4n. Each bin is further divided into s
smaller bins to enable the typical binomial counting without
Pauli exclusion,

���ijklmn� = 	
i

	
j

	
k

	
l

	
m

	
n
� �s − 1 + �i,. . .,n�!

�s − 1� ! ��i,. . .,n�!

	� �

i,. . .,n
�i,. . .,n
 ! ��i,. . .,n�i,. . .,n��i,. . .,n. �17�

See �5� for the details. s shall drop out of the equations in the
continuum and thermodynamic limits when �g
= ��w�2����4→0 as N→�. � evaluates to zero when any of
the g states imply tensile forces, and it evaluates to unity
otherwise. For simplicity we will restrict all further math-
ematics to the stable region S so we may drop � from the
expressions.

We define H as

H � − lim
N→�

�g→0

ln � . �18�

The natural logarithm of �, using Sterling’s approximation,
may be written

ln � = �
i,j,k,l,m,n

��s − 1 + �i,. . .,n�ln�s − 1 + �i,. . .,n� − �s − 1�ln�s

− 1� − �i,. . .,n ln �i,. . .,n + �i,. . .,n ln �i,. . .,n� . �19�

Expanding the first term in a Taylor series around �i,. . .,n=0,
setting s=N�g, and taking the continuum and thermody-
namic limits such that s��i,. . .,n, we obtain

H = 
S
Dg��g�ln

��g�
��g�

. �20�

The functional H=H���g�� is a measure of the number of
states in ���� that correspond to ��g�, and is in fact �the
negative of� the generalization of Shannon’s entropy for
granular contact forces. In the translation, ��g� must be al-
lowed to evolve layer by layer, and therefore so must P�f�.
Hence, we distinguish between the hemispheres of a grain
and use the form of � from Eq. �11� to write

H = 
S
Dg��g�ln

��g�
���g�

. �21�

C. Behavior of � and H in the translation

With this metric in hand, the question we wish to address
is whether �d /dx�H�0 during the translation described
above. Differentiating H,
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d

dx
H = − 

S
Dg� d

dx
��g��1 + ln

���g�
��g�


 + ��g�
d

dx
ln ��g�� .

�22�

The last term �call it �� may be expanded,

� = − 
S
Dg��g�

d

dx
ln ��g�

= − 
S
Dg��g�

d

dx
ln	

�

�P„f��g�…

= −
1

2�
�


S
Dg��g�

d

dx
ln P„f��g�… �23�

and then evaluated by changing the integration from a sum
over all grains to a sum over all contacts,

� = −
1

2


0

�

dfP�f�
d

dx
ln P�f� = −

1

2

d

dx


0

�

dfP�f� = 0.

�24�

Substituting Eqs. �14�–�16� into �d /dx�H,

d

dx
H = N

S
Dg1 ¯ Dgm

S
Dg1� ¯ Dgm� �	




��g
����g
��

− 	



��g
�����g
���1 + ln
���g1�
��g1�


 . �25�

Since we integrate over S for all g
 and g
� , we may swap
variables and average the various equivalent expressions to
obtain

d

dx
H =

N
2m


S
Dg1 ¯ Dgm

S
Dg1� ¯ Dgm� �	




��g
����g
��

− 	



��g
�����g
�
ln
	


��g
�����g
�

	

��g
����g
��

. �26�

By inspection of the integrand we see that it is never positive
for any part of the region of integration. Hence,

d

dx
H � 0. �27�

Furthermore, �d /dx�H=0, if and only if,

	



��g
�����g
� = 	



��g
����g
�� ∀ g
,g
� , �28�

and this is true, if and only if, �d /dx���g�=0, for all g. When
that is the case, then P= P�. This proves that the bulk of the
packing must exist in a relaxed state. More about this state
will follow below.

Furthermore, as shown in the next section, Eq. �28� de-
fines a sufficient condition to solve ��g� and so by Eq. �21� it
is also sufficient to evaluate H. This produces the smallest
possible value of H, since for any other value of H
�d /dx�H�0. Since this derivation is valid in every possible

orientation of the layer �because the derivation was general
and because the stosszahlansatz is symmetric�, then it must
also be valid in the direction of decreasing x,

d

d�− x�
H � 0. �29�

This is not true for the dilute gas, because Boltzmann’s
stosszahlansatz is not symmetric �8�. But for the granular
case with the greater symmetry,

d

dx
H � 0 and

d

dx
H � 0 �30�

which implies

d

dx
H � 0 �31�

must be true always, for the bulk of an infinitely large, ho-
mogeneous granular packing in the special case considered
here. No exploration of phase space is required for the pack-
ing to relax. Relaxation is assured through spatial relation-
ships, not temporal ones.

The reason this theory is limited to the bulk of the pack-
ing, rather than predicting relaxation of stresses moving
away from the boundary of a container, is that there are two
things that can cause H to change: evolving stresses and
evolving fabric. At the present we do not know how to pre-
dict the evolution of fabric in the boundary layer, and so it is
impossible to separate out the effect of the relaxation of
stresses in that same region. By assuming that the fabric is
constant as in the bulk of a very large packing, this theory
has concluded that the spatial distribution of stresses is such
that it will minimize H within that fabric.

Now we shall consider the physical meaning of H. By its
definition, minimum H corresponds to maximum contact
force entropy. Thus, the maximum entropy condition has
been proven. This proof depends only on the stosszahlansatz,
which shall be validated by comparing its predictions against
numerical data. The conclusion is that Edwards’ hypothesis
is not necessary to assert maximum contact force entropy.

IV. DERIVATION OF THE DENSITY OF STATES AND P„f…
WITHOUT EDWARDS’ HYPOTHESIS

The foregoing granular H theorem tells us that for infi-
nitely large packings maximum entropy �d /dx�H�0 persists
in every layer, and by extension to very large, finite pack-
ings, it persists in the majority of layers away from the
boundaries but with greater fluctuations occurring in smaller
packings. The sufficient and necessary condition for maxi-
mum entropy is given by Eq. �28�. This can be written in the
form

	

=1

m
��g
�

���g
�
= 	


=1

m
��g
��

���g
��
∀ g
,g
� , �32�

which implies that either side of the equation may be written
as equal to a constant. Taking the logarithm
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�

=1

m

ln
��g
�

���g
�
= C . �33�

Since this is valid for every possible “m-nary” transition of
grains during a translation distance of �x, its most general
solution is when C is written as a linear combination of all
quantities that are conserved in the translation. Since we did
not specify the orientation or the direction of the translation,
this result is valid for all. As discussed in Sec. II A, the total
force in every orientation must be conserved. Fabric is also
conserved by definition of the problem. Therefore,

ln
��g
�
��g
�

= �xwx

 + �ywy


 + ���1, . . . ,�4� �34�

for every g
�S. The first two terms are for force conserva-
tion and the last is for fabric conservation. �We can write the
first two terms using stress tensor notation if we wish, and
hence explicitly include shear stresses.� Rearranging to ob-
tain �,

��g� = G��1, . . . ,�4���g���g�e−�xwx−�ywy , �35�

where we recall that � is the function that enforces the
bounds on S, evaluating either to unity or zero if the cohe-
sionless grain is stable or unstable, respectively.
G��1 , . . . ,�4� is the fabric partition factor. Equation �35� is
identical to the equation derived in �5� by Gibbs’ most prob-
able distribution method. That method assumed the maxi-
mum entropy condition as a subset of the claims in Edwards’
hypothesis, but here it has been derived. Remembering that
� is a functional of P�f� by Eq. �11� and that

P�f� = 
S
Dg��g��2

„f − f�g�… , �36�

we see that Eqs. �35� and �36� form a recursion so that � may
be solved numerically when stress and fabric are specified.
Solving for ��g� provides everything that can be known
about the single-particle density of states, including P�f�, so
it makes testable predictions.

V. EMPIRICAL VALIDATION OF THE GRANULAR
STOSSZAHLANSATZ

As with Boltzmann’s theory, the translation equation and
the granular H theorem depend upon the validity of the
stosszahlansatz. It can be tested only by comparison with
experimental or simulation data. First we must obtain predic-
tions from the theory so we have something to compare. The
numerical solution of ��g� from the recursion equation has
been obtained �in approximation, for the isotropic case� and
the details of the method are provided in �5�. The method
uses Monte Carlo integration, randomly sampling the region
of integration with a flat measure. This is performed in a
recursion, with ��g� obtained from P�f� and vice versa until
convergence. This recursion begins from an arbitrary initial
condition, for example, P�f�=��f −1�. Several different ini-
tial conditions were checked and all converged to the same
result. This method was used to produce a representation of

��g� consisting of 12-billion grain configurations, which was
sufficient for very smooth statistics. On an average desktop
workstation the algorithm converged for a sample of one-
million grains in about 1 minute, with a larger number of
grains taking proportionately longer. Several different algo-
rithms and different approximations to the math were used
and they resulted in only minor variations in the statistical
results, demonstrating the robustness of the basic form of the
solution. Since a packing’s fabric P4���1 , . . . ,�4� will evolve
as the packing is sheared, it is desirable to force the numeri-
cal solution to a ��g� that has some particular fabric that is
found in a real case. Thus, it is necessary to weight the
Monte Carlo sampling to include some classes of contact
angle configurations more often than others. The weighting
may be determined iteratively by adjusting the weight factor
used in the algorithm until the desired fabric is obtained.
This weight factor, multiplied by zero in the regions of steric
exclusion, is in fact the fabric partition factor G��1 , . . . ,�4�
that appears in Eq. �35�. Similarly, the overall stress in the
solution ��g� may be driven to any desired state by weight-
ing the Monte Carlo sampling with the Boltzman factor
shown in Eq. �35�.

This numerical solution has been compared to numerical
data from discrete element modeling �DEM� with idealiza-
tions approaching those of the theory, and a subset of the
results have appeared in �7� with an archival-length paper to
follow. The simulation used 17 000 grains that were 2D,
round, frictionless, and cohesionless. The fabric used in the
theory implies that they are monodisperse �in that the steric
exclusion angle was assumed to be precisely � /3 radians�.
However, the simulation used a small polydispersity of 1.5 to
avoid crystallization of the grains. To approach the isotropic
idealization the grains were deposited into a rectangular,
rigid-walled container randomly and without gravity, and
then expanded in diameter while allowed to push each other
around until they jammed. The grains within four grain di-
ameters of the walls were discarded from the statistical
analysis to avoid boundary effects, since the theory describes
the bulk of infinitely large packings �where boundaries do
not exist�. Residual kinetic energy was viscously dissipated
until the forces had negligible dynamical fluctuation, repre-
senting the idealization of a perfectly static packing. The
grains had a linear spring contact law, but the packing was
kept as close as could be achieved near the limit of jamming
so that minimal compression of the contacts occurred. This
approximates the perfect grain rigidity and the isostaticity of
the theory wherein the exact form of the contact law be-
comes irrelevant. The data show that with these idealizations
the predictions of the theory are validated. An example of the
correspondence between theory and empirical results is
shown in Fig. 6, which shows P�f� obtained from the theory
and from the DEM data for the Z=4 grains. Discussion of
the results of Z�4 grains is found in �7� and will be ex-
panded in the future archival-length paper. It should be noted
that there are no free parameters in the theory that could have
been adjusted to obtain the correspondence; the good agree-
ment occurs automatically. Thus, the stosszahlansatz has
been validated along with the maximum entropy condition
that it predicts for this isotropic case. We may conclude that
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the reductionist explanation for granular contact force statis-
tics is that they exist at maximum entropy, and that is be-
cause correlations cannot arise through the closure of loops
of grains. This statement should be further tested in noniso-
tropic and less idealized cases.

VI. SUMMARY AND CONCLUSIONS

By following Boltzmann’s method but with symmetric in-
formation flow in the collision network, this paper has shown
that the layer-by-layer relationships in granular contact
forces, like the time evolution of momenta in a dilute gas,
must cause their statistical distribution to relax to the form
that represents maximum entropy. This paper also derived a
version of Boltzmann’s stosszahlansatz and a version of Sh-
annon’s entropy �negative H� relevant to granular contact
forces, and found a way to derive ��g� without recourse to
Edwards’ hypothesis. It has been demonstrated previously
with more results to appear in a future archival paper that the
predictions of ��g� are in outstanding agreement with nu-
merical simulations.

Boltzmann’s H theorem for the dilute gas tells us that
every tiny segment of the Poincáre cycle is dominated by the
Maxwellian distribution, so that only a tiny amount of dy-
namics is needed to depart from any non-Maxwellian state
and settle into maximum entropy. Both the Poincáre ergod-
icity and the Boltzmannian relaxation are thus attained by
traveling along the trajectory in phase space. Static granular
packings, on the other hand, do not travel along any trajec-
tory in phase space. The granular translation theorem devel-
oped above depends upon contact forces maintaining static
spatial relationships, not traveling and interacting through
time. Whereas Boltzmann’s proof obviated the need to travel
the entire Poincáre cycle and showed that the system need
travel only a tiny segment of it to justify the assumptions of
statistical mechanics, the granular H theorem shows that a
granular packing need not travel through � space at all, be-
cause it has special relationships between its own layerwise
subspaces built into its single locus in � space. The author
proposes that this special feature of granular packings de-
serves a name, and “self-ergodic” seems appropriate. That is,

the system must exist in a relaxed state by nature of its in-
ternal relationships �self-enforced and affecting itself�, and
this produces the same statistical characteristics that an er-
godic theorem seeks to establish for kinetic systems explor-
ing all conserved-energy states with equal probability. Thus
the terminology: self+ergodic.

There are of course many significant classes of granular
packings that will not be relaxed to maximum entropy, but
these have not been discussed here. These include the bound-
ary regions near the container walls of a packing, as well as
granular packings that were prepared to have abrupt changes
in fabric somewhere within their bulk so that the density of
states cannot be in its most relaxed state within the narrow
band of grains on both sides of the interface. The difficulty in
applying this theory to boundary regions is that the fabric
does not remain constant near the boundary, whereas the
theory assumes that the fabric is constant. Another case not
described by the theory is the thin layer of grains at the top
surface of a packing in gravity, where the self-weight intro-
duces non-negligible stress gradients. However, solution of
the more symmetric case considered here opens the door to
solving more complex problems.

This theory has been developed only for the case of rigid,
round grains without friction. This avoids the complication
of rotational degrees of freedom for the grains. The author
does not know how to define the grain states to include
torques and rotational degrees of freedom so that they would
have sufficient symmetry for the analysis. The assumptions
of the theory also exclude cases with highly compressed
grains, which are far from isostaticity �15�.

The theory has been developed assuming Z=4 for every
grain, although frictionless 2D packings with low polydisper-
sity are known to have grains with Z=3, Z=5, and occasion-
ally Z=6. It seems possible to generalize the theory to allow
for different values of Z as long as the average is still 4 for
isostaticity. In this paper, the grain state g was defined to
have just the two variables with units of force, wx and wy,
plus the four contact angles. We may alternatively use the
two variables t=wx+wy and s= �wx−wy� / t. So, for grains
with z=3 we would define g3= �t ,�1 ,�2 ,�3�, and this would
be sufficient to define the grain’s entire state allowing us to
solve all the contact force values on the grain by linear alge-
bra and trigonometry. For Z=4 we would use g4
= �t ,s · t ,�1 , . . . ,�4�, which is equivalent to the treatment
given in this paper. Then, for Z=5 we need one additional
state variable in g5 to allow us to solve all five contact forces
on the grain. This additional variable could simply be the
value of one of the contact forces, but to maintain symmetry
among the contacts it would presumably be better to define
something analogous to a quadrupole term and thus continue
the sequence of t and st, which represent the monopole and
dipole terms, respectively. Obtaining a numerical solution to
the resulting theory would be a simple extension of the ex-
isting Z=4 algorithm.

It is unknown whether this theory will work for an or-
dered �crystalline� granular packing. Experimental and nu-
merical studies have shown that even the microscopic varia-
tions in packing geometry of crystalline packings are
sufficient to break the symmetry and relax P�f� to a typical
form �16�. This theory may take advantage of this by keeping

1 2 3 4 5

-8

-6

-4

-2

ln P( f )

f

DEM data for Z=4

Theory

FIG. 6. Semilogarithmic P�f� obtained in numerical solution of
the translation equation �theory� and from the Z=4 population of a
DEM simulation. The statistical fluctuations in the tail of the DEM
data �amplified on the logarithm axis�, do not exist in the theory
because of the thermodynamic limit.
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translation distances �x small enough that the microscopic
packing variations are orders-of-magnitude larger. Thus even
with a crystalline packing the assumptions behind Eqs. �10�
and �12� should be valid and the theory may work. Never-
theless, it is possible that correlations will arise in the regular
pattern of closed loops, violating the generalized stosszahl-
ansatz. It would be interesting to study how much disorder is
required for the theory to work.

One application of this theory in particular was hypoth-
esized by the author several years ago �17�. The idea is that,
since granular contact forces are in a state of equilibrium at
maximum entropy subject to the layer-by-layer conservation
of forces in each direction, then it is possible to define a
rank-2 tensor “temperature” for the contact forces and even a
coordination number “chemical potential” to explain the par-
tition of stress and fabric fluctuations throughout a granular
packing. This approach may lead to a full theory of rheology.
These observations were apparent when numerical solutions
to the theory first proved robust and convergent, even before
this formal proof of maximum entropy was accomplished.
That is because the numerical convergence discussed in the
earlier presentation was in fact an empirical demonstration of
the same concept. Once the “self-ergodic” nature of granular
materials is identified, then the temperature and entropy con-
cepts fall out rather straightforwardly. A future presentation
will be forthcoming to explain these concepts along with a
series of discrete element modeling simulations that have
been performed to test them and to draw further conclusions.

APPENDIX A: A PRIORI ARGUMENTS FOR THE
GRANULAR STOSSZAHLANSATZ

As illustrated in Fig. 7, correlations between neighboring
contacts on the same grain arise either through the grain
itself or through the loops in the packing. A typical loop is
four or more grains, so going the long way around a loop
induces a relatively weak four-point correlation, but going
the short way between the two contacts �staying intragrain�
induces a much stronger two-point correlation.

Furthermore, we may note that small loops composed of
N grains, 3�N�8, are formed through adjacent pairs of
contacts that are closer to the noncorrelating � /2 angle than
the correlating � radians of separation �see �9��, and hence
there should be minimal correlation in each two-point leg of
a force loop. The composite correlation going all the way
around the loop must therefore be exceedingly weak. On the
other hand, force loops that pass through a larger number of
grains and hence closer to � radians of separation for each
two-point leg of the loop will require a vastly larger N to
slowly turn through the full 2� radians to close the loop as
illustrated in Fig. 8. Because N is so large �N�8�, we would
therefore expect these N-point correlations to be very weak,
as well.

The total correlation between a pair of contacts on a grain
must be the sum of information from all the loops in the
packing that contain the grain in question. Due to the disor-
der of the packing and the large number of loops that contain
the same grain, some correlating and some anticorrelating, it
is expected that the contributions from increasingly larger
loops of grains will be increasingly decoherent and largely
cancel one another.

From these arguments there is good reason to assume a
priori that the intragrain contribution to the correlations is
the dominant one and that closed-loop contributions may be
discarded. This will be the granular stosszahlansatz. The ul-
timate proof of this stosszahlansatz is its ability to make
valid predictions. Comparison with empirical data �6,7� have
validated its predictions.

APPENDIX B: TWO FORMS OF THE COLLISION
AUXILIARY IN THE DENSITY OF STATES

The purpose of the “collision auxiliary” term in Eq. �4� is
to restrict the allowable set of vectors “colliding” �meeting
together� at the nodes �grains or particle collisions�. Already

A
B
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A
B

C

D

1

FIG. 7. Correlations between neighboring contact forces may
arise two different ways. �Left-hand side� They arise through intra-
grain stability requirements, resulting in a strong, two-point corre-
lation between the forces at B and A. �Right-hand side� They arise
through a series of intragrain stability requirements working grain
by grain around the loops, resulting in weak higher-order correla-
tions. The example here shows a four-point correlation through the
loop, B to C to D to A, which will be much weaker than the direct
two-point correlation from B to A.
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FIG. 8. Contacts that are highly correlated are close to � radians
apart on the same grain �9�. Hence, a closed loop composed of
highly correlated pairs of contacts can turn only very slowly and
must pass through a very large number of grains.
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the vector sums of the forces or momenta are automatically
conserved �using Newton’s second law� by the proper selec-
tion of phase space coordinates. However, in both granular
mechanics and in the kinetic theory of dilute gases there are
additional restrictions imposed by physics upon these sets of
vectors.

For the case of the dilute gas, in addition to conservation
of momentum there is the requirement for the conservation
of energy, and even that is not sufficient to define the allow-
able sets of vectors appearing at each collision. A pair of
colliding momentum vectors may meet at any arbitrary mag-
nitudes and angle relative to one another. The magnitudes
and directions of the two outgoing momentum vectors are
then determined by the precise form of the interaction poten-
tial between the particles. Thus, the collision auxiliary term
in Eq. �4� must be written to specify the set of allowable
outgoing vectors based upon the incoming vectors and the
interaction potential.

For the case of granular packings, on the other hand, the
sets of allowable force vectors appearing on each grain are
not so precisely constrained. In addition to the conservation
of force from one hemisphere to the next �Newton’s second
law� there is only the requirements of steric exclusion. There
is no analog of interaction potential or conservation of en-
ergy to determine two of the vectors as a function of the
other two. Precisely because of this additional freedom,
granular packings exhibit memory in their fabric, the statis-
tical preponderance of their contact angles resulting from
past disturbances of the packing. Therefore, an ensemble of
granular packings would need to have the current state of its
fabric specified in order to be a completely defined en-
semble. The “collision auxiliary” is therefore used for this
purpose.

Although the collision auxiliary plays two very different
roles in granular versus kinetic ensembles, they have been
lumped together here under the name “collision auxiliary”
because they both play the role of defining the sets of vectors
appearing at the nodes insofar as required by the physics.
The important point to note is that it does not matter which
form we use in this paper, either the kinetic or the granular
form, because this term factors out from the sum in Eq. �6�
and does not affect the results. Thus, the results we obtain are
valid for either granular or kinetic ensembles and we can
compare the mathematical form derived for the stosszahlan-
satz in one case with the mathematical form derived in the
other.

APPENDIX C: DERIVATION OF THE STOSSZAHLANSATZ
FOR TWO CASES OF INFORMATION FLOW

Beginning from Eq. �7�, we expand the product over Ci,

� = lim
�Nj�→���

	
j

�
ij=1

Nj!

	

j=1

Nj

	
�=1

2

	
�j=
j

Nj

	
�=3

4

�Ci
�2�f
� + f��� ,

�C1�

where the Kronecker � function, �Ci
, is nonzero only for

contact pairs contained within list Ci. We have ordered the
contact pairs in Ci so that the grain in the direction of lower

j is 
 and contacts in the increasing j hemisphere are num-
bered 1 and 2. Note that the product in � is only from 
 to N,
the upper triangle in the �
 ,�� plane, so that Newton’s third
law is enforced only once for every pair. This produces the
correct number of � functions so that the units of �̃ are cor-
rect. In writing it this way, we have preferentially given it an
asymmetry in the j direction.

Now we must make the critical assumption about causal-
ity in this network. First we attempt to recover Boltzmann’s
stosszahlansatz for the dilute gas. We do so by treating the
information asymmetrically in the j direction, so that the
probability of finding a certain set of grains in j depends only
on the set of grains in j−1. Therefore, for this case we may
start from Eq. �C1�. Commuting the sum in i with the first
two products,

� = lim
�Nj�→���

M	
j

	

j=1

Nj

	
�=1

2

�
ij=1

Nj!

	
�j=
j

Nj

	
�=3

4

�Ci
�2�f
� + f���

= lim
�Nj�→���

M	
j

	

j=1

Nj

	
�=1

2

�
ij=1

Nj!

�
�j=
j

Nj

�
�=3

4

�2�f
� + f��� . �C2�

This was renormalized by M since each of the terms in the
product is now a sum of many � functions instead of just one
� function. This also introduced a small error inside the limit
in that the product of the sums expands to a sum of the
product of all possible combinations of the � functions with
replacement, whereas it should have been without replace-
ment. Taking the limit, the cross terms with nonrepresenta-
tive distributions of single grain states �g become a set of
zero measure and so the error vanishes. Next, we expand the
� function

� = lim
�Nj�→���

M	
j

	

j=1

Nj

	
�=1

2

�
ij=1

Nj!

�
�j=
j

Nj

�
�=3

4

lim
�f→0

1

�f
lim

��→0

1

��
���f��

− fk�f
��� − ��f�� − fk+1�f
����������� − �l��
��� − ��

− ������ − �l+1��
��� − ��� , �C3�

where the subscripts k and l define the kth interval of the
force axis as the interval containing f
� and the lth interval
of the angle axis as the interval containing �
�. Taking the
summations,

� = M	
j

lim
�Nj�→���

lim
�f→0

lim
��→0

1

�F

1

��
	

=1

N

	
�=1

4

nkl
�j�, �C4�

where nkl
�j� is the number of contacts in region j that fall into

the kth and lth bins. Taking the limits converts nkl
�j�→Pj�f�,

� = M	
j

	

=1

Nj

Pj�f
1�Pj�f
2� . �C5�

This shows that the probability of finding a member of the
ensemble with a particular set of force pairs intersecting on a
common grain in the jth layer is 	
=1

Nj Fj�f
1 , f
2�, where the
distribution of intersecting forces in the jth layer of the en-
semble is

Fj�f1,f2� = Pj�f1�Pj�f2� . �C6�
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We have derived Boltzmann’s stosszahlansatz. We obtained
it from a statement about the topology of the network—no
closure of force �or momentum� loops—rather than simply
writing it as a statement borrowed from probability theory.

Now we can put into the analysis the symmetry that is
correct for a granular packing, so that causality operates
equally in all directions. We do so by modifying Eq. �C1� by
including all contacts on each grain and by including the
entire �
 ,�� plane, so that every contact is considered two
times: once looking in the +j direction and again looking in
the −j direction. �We can also relax the restriction that con-
tacts 1 and 2 must be on a particular hemisphere of the grain
with contacts 3 and 4 on the opposite hemisphere. This more
symmetric treatment allows grains to have three contacts on
one side of the grain and only one contact on the opposite
side.� But now that we are multiplying over the entire �
 ,��
plane there are 2 times as many � functions and so in effect
� has been squared,

�2 = lim
�Nj�→���

	
j

�
ij=1

Nj!

	

j=1

Nj

	
�=1

4

	
�j=1

Nj

	
�=1

4

�Ci
�2�f
� + f��� .

�C7�

The analysis is now symmetric in j and proceeds identically
as before, with the end result,

�2 = M	
j

	

=1

Nj

Pj�f
1�Pj�f
2�Pj�f
3�Pj�f
4� , �C8�

so that by taking the square root of both sides we conclude

Fj�wx,wy,�1, . . . ,�4� = �Pj�f1�Pj�f2�Pj�f3�Pj�f4��1/2.

�C9�

This is the granular stosszahlansatz. Both this version and
Eq. �C6� assert that the topology of the network does not
precorrelate the intersecting force vectors.
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